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Abstract. The notion of as transitive closure of a fuzzy relation is very useful for

clustering in pattern recognition, for fuzzy databases, etc. The original algorithm proposed

by L. Zadeh (1971) requires the computation time O(n 4), where n is the number of elements

in the relation. In 1974, J. C. Dunn proposed a O(n 2) algorithm. Since we must compute

n(n- 1)/2 different values s(a,b) (a ¢ b) that represent the fuzzy relation, and we need

at least one computational step to compute each of these values, we cannot compute all

of them in less than O(n 2) steps. So, Dunn's algorithm is in this sense optimal. For small

n, it is OK. However, for big n (e.g., for big databases), it is still a lot, so it would be

desirable to decrease the computation time (this problem was formulated by J. Bezdek).

Since this decrease cannot be done on a sequential computer, the only way to do it is to

use a computer with several processors working in parallel.

We show that on a parallel computer, transitive closure can be computed in time

O((log 
x. FORMULATION Or THE PROBLEM

Crisp similarity: the notion of equivalence. Suppose that have several objects,

and we need to group them into clusters, so that similar objects fall into the same group.

In some cases, this is a perfectly well defined (crisp) task, and for every two objects we

know exactly whether they belong to one class or not. In this case, the relation a -,, b

(meaning that a and b belong to one and the same class) satisfies the following natural

properties: a ,,_ a; a _ b _ b ,_ a,.and (a -,, b & b _ c) ---, a ,,- c. The relation with such

properties is called an equivalence relation. It is well known that such a relation divides

the set of objects into non-intersecting classes such that a -,_ b if and only if a and b belong

to one and the same class.

It is not necessary to compare all objects with all the others to get the similarity

relation: it is sufficient to have the results of comparing some pairs (and for big n, it

is often simply impossible to ask the user to compare all pairs). If by K we denote the

relation that represents our knowledge (i.e., aKb if we know that a is similar to b), then

we must find the equivalence relation ,-, with the property that aRb --_ a ,,, b. The only

natural restriction on K is that aKa for all a (this we know for sure), and aKb _ bKa.

There may be several equivalence relations ,,- with this property; one of them is in which

a ,-, b for all a and b. We would like to conclude that a ,,_ b only if we are forced to conclude

that by the knowledge that we have. So, we would like to choose as ,,- the "smallest" of

all possible relations with these properties (a relation is defined in mathematics as a set

of pairs; the smallest relation means the relation that is contained in all other relations).

Such smallest relation always exists, and is called a transitive closure K* of the initial

relation K.
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General case: fuzzy similarity. In many real-life situations, for some pairs of

objects, we are unsure of whether they are similar or not. If we describe our degree of

belief that a and b are similar, by the number s(a, b) E [0, 1], then we get a fuzzy relation.

The formulas that define an equivalence relation can be used to describe a fuzzy similarity

relation. To do that, we must explain what ---, and & mean in fuzzy case. The statement

A _ B is natural to interpret as saying that our degree of belief in B is greater than or

equal to our degree of belief in A; and we will denote by f_ the function from [0, 1] x [0, 1]

to [0,1] that corresponds to & (it is supposed to be a t-norm, i.e., a symmetric associative

operation, with the additional properties f_(a, O) = 0 and f_(a, 1) = a; the most widely

used t-norms are min and product).

Thus, we arrive at the following definition that was initially proposed by L. Zadeh

himself [Z71] (in this and the following definitions, we will assume that some t-norm f_

is fixed).

Definition 1. A fuzzy relation on a set X is a function s : [0,1] x [0,1] --* [0,1]. It

is called a similarity relation if for all a,b,c E X, s(a,a) = 1, s(a,b) = s(b,a), and

s(a,c) _ fa(s(a,b),s(b,c)).

Definition of a fuzzy transitive closure. Just like in a crisp case, we may not

have all the information about the similarity of the objects. This partial knowledge can be

represented by assigning a number k(a, b) E [0, 1] to describe to what extent wee believe

that a is similar to be. Evidently, a is similar to a, and if a is similar to b, then b is similar

to a, so k(a, a) = 1, and k(a, b) = k(b, a). From this knowledge, we must find the transitive

similarity relation s(a, b). The natural conditions on s are as follows:

• if we know that a and b are similar, then they are similar (i.e., s(a, b) _ k(a, b));

• we state that s(a, b) only when we are forced to do it, i.e., s must be the smallest (=

weakest) similarity relation that follows from our knowledge.

These ideas, when formalized, lead to the following definitions (proposed by Zadeh):

Definition 2. A fuzzy relation k is called symmetric if k(a, b) = k(b, a) for all a and b_

and reflexive if k(a, a) = 1 for all a. We say that a relation k is weaker than the relation

s if k(a, b) < s(a, b) for all a, b. In this case, we also say that _ follows from k. If we are

given a family of fuzzy relations, then the weakest among them (if it exists) will also be

called the smallest.

Definition 3. For a given symmetric reflexive fuzzy relation k(a, b) = k(b, a), by its

transitive closure we mean the smallest of all similarity relations that follow from k. We

will denote the transitive closure of the relation k by k*.

Zadeh proved that every symmetric reflexive relation has a transitive closure.

Why is it important to compute fuzzy transitive closure? Zadeh showed [Z71]

that this transitive closure allows us to form a reasonable clustering of the objects: namely,

if we use fu = min, then the relation k*(a, b) :> _ is an equivalence relation for all a, and

so the equivalence classes that correspond to different a, form a hierarchic clustering (see

also [BH78] and [BS92]).



Another application of fuzzy transitive closure is in fuzzy databases, when we are
given only partial (and fuzzy) information about who is similar to whom, and we want to
be able to answer queries about the similarity of other pairs aswell. In this case,we want
to be able, given some relation k(a,b), to compute k*(a,b) for all a and b (this idea was

proposed in [BBH86]).

How to compute fuzzy transitive closure? The first algorithm to compute k*

from k (for fa = min) was proposed by L. Zadeh in [Z71]. It requires O(n 4) computa-

tional steps, where n = IXI is the total number of objects in X. Faster algorithms were

proposed in [THT71] (O(n 3 log 2 n)), [KY74] (O(n3)), [D74], [L90] (O(n 2) for min), and

[LY90] (O(n 2 log 2 n) for an arbitrary f_).

Formulation of the main problem: for applications, we need a faster al-

gorithm. In we are classifying a few objects (like 10), then n 2 ,,_ 100 is a reasonable

computation time. However, for huge databases, where n can be big, an algorithm that

requires the computation time ,-_ n 2 may be too slow. Therefore, it is desirable to find

an algorithm that computes the transitive closure faster. This problem was formulated

by J. Bezdek during an annual 1992 meeting of the North American Fuzzy Information

Processing Society (NAFIPS).

On a sequential computer, Dunn's algorithm is the fastest possible. Since

our goal is to compute k*(a,b) for n(n- 1)/2 different pairs a ¢ b, and computing each

value requires at least one computational step, there is no way to compute k*(a, b) on a

sequential computer faster than in n(n - 1)/2 = O(n _) computational steps. So, Dunn's

algorithm is asymptotically the fastest (in the sense that no algorithm with better time

asymptotic is possible).

So, we need a parallel computer. Since we cannot decrease the computation time

on a sequential computer, the only way to do it is to use several processors working in

parallel, i.e., to use a parallel computer. In the current paper, we are presenting algorithms

that compute the fuzzy transitive closure on a parallel computer.

2. MAIN RESULTS

In this paper, we will consider the two most frequently used models of parallel com-

putations:

• The first one is called Concurrent Read Exclusive Write (CREW) Parallel Random

Access Machine (PRAM). In this model, all the processors have access to the same

memory. Several processors can read from the same memory location concurrently,

but only one processor at a time can write to a given memory location.

• Another possible model is common Concurrent Read Concurrent Write (common

CRCW) PRAM, where several processors are allowed to send the "write" commands

simultaneously to the same memory location. If all these "write" commands require

to write the same value, then this value is written; else, nothing is written into the

memory.

THEOREM 1. On CREW PRAM, the transitive closure of a fuzzy symmetric relation

can be computed in O((log_ n) 2) time using O(n 3) processors. On common CRCW PRAM,



it can be computed in O(log 2 n) time using O(n a) processors, or in O(log 2 R-1og2(log 2 n))

time using O(n a) processors.

(All the algorithms are described in Sections 3 and 4.)

The estimates for common CRCW essentially use the fact that all the processors share

the same memory. The estimates for CREW PRAM remain the same if we assume that

the processors do not have the shared memory. In particular, we can consider one of the

real-life parallel architectures: a hypercube. A hypercube is a computer consisting of 2 d

processors. To each of them, a number from 0 to 2 d - 1 is assigned. In binary codes, these

numbers are just all possible d-digit binary numbers. Two processors are connected if

and only if the binary representations of their numbers differ exactly in 1 bit.

THEOREM 2. On a hypercube of size _ n 3, the transitive closure of a fuzzy relation

can be computed in O((log2 n) 2) time.

The number of processors can be made somewhat smaller if we take into consideration

the fact that the values k(a, b) are defined only approximately. For example, one can ask an

expert to estimate his degree of belief that a and b are similar on a scale from 0 to 10, and

then divide the resulting number by 10. Hardly anyone can make distinction between more

than 10 of his different degrees of belief. So, even if we use a more sophisticated technique

to obtain the values k(a, b), the values that differ by less than, say, 0.1, represent more

or less the same degree of belief (this argument, in application to a different problem,

appeared, e.g., in [NKLT92]). In this case, it makes no big sense to waste time and

processors on computing the values k*(a, b) precisely: it is sufficient to compute them with

some precision ¢ (_ 0.1).

Definition 4. We say that an algorithm computes k*(a, b) with precision ¢, if it computes

the values k,(a,b) such that for all a and b, [k*(a,b) - k,(a,b)[ < e.

THEOREM 3. On CREW PRAM, the transitive closure of a fuzzy relation can be

computed with precision _ in O((log2 n) 2 + log2(1/_)) time, using O(n2"Sr6/e) processors.

On common CRCW PRAM, it can be computed with precision ¢ in O(log 2 n + log2(1/¢))

time using O(na /e) processors.

For n >> 10 and _ _ 0.1, na¢ << n 4, so these algorithms are actually faster than the

ones that compute k*(a, b) precisely.

3. ALGORITHMS THAT COMPUTE THE TRANSITIVE CLOSURE

PRECISELY

The main idea. For our algorithms, we will use the following result that was first

proved and used in [THT71] (actually, it was proved for f_: = win, but one can easily see

that it is true for an arbitrary t-norm f_; for a compact exposition of these results, see

[D74]). Namely, it turns out that k*(a,b) = kt(a,b), where l= [log2(n - 1)], and the the

sequence of fuzzy relations ki(a, b), 1 < i <__ l is defined recursively as follows: kl(a, b) =

b), and ki+l(a,b) = k (b,c))), where c runs over all elementsof X.
The algorithm from [THT71] consists of consequently computing k2, ha,..., kz. We will use

the same idea in our parallel algorithms.



As noted in [THT71] and [D74], computing k_+l from ki is similar to computing the

product of two identical matrices; the only difference is that here, we have fa instead of

the product, and max instead of the sum. The standard method of computing the product

cik = _-'_k aijbjk of the two matrices aij and bjk in parallel (see, e.g., [ACS90], [J92, Ch. 1])

is as follows: we take n 3 processors corresponding to all possible triples (i,j, k); on each

processor, we compute aijbjk, and then add the results that correspond to different k.

We will use the same idea in our case, by taking n 3 processors that correspond to all

possible triples (a, b, c), and letting each processor compute the value f_ (ki(a, c), ki(b, c)).

Now, to get ki+l(a, b), we must compute the maximum of n values that correspond to

different c.

How to compute the maximum of n numbers in parallel: a brief survey.

The problem of computing the maximum of n numbers in parallel is well-analyzed, and

optimal algorithms are known [J92]. Those algorithms depends on the type of parallel

computer that we are using.

For CREW, the optimal algorithm that computes the maximum of n numbers requires

O(log 2 n) computation time and n processors (she, e.g., [J92], Section 2.6). Its idea is

very simple: we divide the list of n elements into two halves, use separate computers to

compute the maxima of each half (concurrently), and then compute the maximum of the

two resulting maxima in one computational step. Computing the maxima of each half

can be also done by this same algorithm. So, if we start with n = 2 k elements, then the

time that is required to find their maximum (we will denote this time by t(k)) is equal

to the time t(k - 1) that is required to find a maximum of 2 k-1 numbers, plus 1. Hence,

t(k) = t(k-1)+l, and t(1) = 0, thencet(k) = k- 1 _ log2(n ). It is known that for

CREW, this algorithm is optimal [J92, p. 71].

For common CRCW, there exist two algorithms that compute the maximum of n

numbers:

• the first one (see, e.g., [J92, Section 2.6.1]) computes the maximum in O(1) compu-

tation time using O(n 2) processors;

• the second one (proposed in [SVS1]; see, e.g., [J92, Section 2.6.2]) computes the same

maximum in O(log2(log 2 n)) computation time using O(n/log2(log 2 n)) processors. It

is known [V85; J92, Section 4.6.3] that this algorithm cannot be improved: namely, if

we use O(n) processors, then computing the maximum of n elements requires at least

log2(log 2 n) computational steps.

Now, we are ready to describe the algorithms that compute fuzzy transitive closure.

Description of the algorithms. We propose three algorithms, one for CREW, and

two others for common CRCW PRAM. In all of them, we compute first k2 from kl, then

k3 from k2, etc, until we finally get kt = k*(a, b). So, each of these algorithms consists of

l = O(log 2 n) iterations.

On each iteration, to compute ki+l from ki, we first use n 3 processors that correspond

to all triples (a, b, c), to compute the values f_(ki(a, c), ki(b, c)). This computation takes



exactly the time that is necessaryto compute f&(p, q) for known p and q, so it takes 0(1)

time.

Next, we compute the maximum of the resulting n elements: in Algorithm 1 (for

CREW), we use n processors and log 2 n computation time; in Algorithm 2, we use O(n 2)

processors and O(1) computation time; in Algorithm 3, we use O(n) processors, and

O(log 2(log 2 n)) computation time.

Estimates. Let us now estimate the computation time and the number of processors

for these algorithms.

The computation time can be obtained by adding O(1) and the time for finding the

maximum (thus, we get the time of one iteration), and multiplying the resulting sum by

the number of iterations O(log 2 n). So, for Algorithm 1, we need O((log 2 n) 2) time, for

Algorithm 2 we need O(log 2 n), and for Algorithm 3, we need O(log 2 n. log2(log 2 n)).

As for the number of processors, in algorithms 1 and 3, we need O(n) processors for

each of n 2 pairs (a, b), so O(n 3) processors are sufficient for these algorithms. For algorithm

2, we need n 2 processors for every pair, so, totally, we need O(n 4) processors.

The hypercube case. In this case (see Section 1.3 of [J92]), we can also compute

ki+l(a, b) from k_(a,b) in O(log 2 n) time using n 3 processors: namely, we need log 2 n

time to communicate the values ki(a,c) and ki(b,c) to the node that corresponds to the

triple (a,b,c), O(1) time to compute f&(ki(a,c),ki(c,a)), and then log 2 n time to compute

the maximum of the resulting values. Multiplying this time by the number of iterations

(O(log 2 n)), we conclude that the total computation time is < O((log 2 n)2).

4. ALGORITHMS THAT COMPUTE THE TRANSITIVE CLOSURE

APPROXIMATELY

These algorithms are based on the following fact (discovered by L. Zadeh in his pioneer

paper [Z71]): for every o_, the crisp equivalence relation k*(a, b) >_ _ is a transitive closure

of the crisp relation k(a, b) > o_. Therefore, we take O(1/_) different values _ = _, 2_, 3c, ...,

and for each of these values compute the crisp transitive closure of the relation k(a, b) >_ a.

Computations that correspond to different values of a, can be done in parallel. As a result,

for every pair (a, b), and for each of these a, we know whether the inequality k*(a, b) > oe

is true or not. To find the value of k*(a, b) with precision ¢, we must find i < 1/e for

which ie < k*(a, b) < (i + 1)e, i.e., for which the inequality k*(a, b) >_ i_ if true, and the

inequality k*(a, b) > (i + 1)e is false. This value i can be found by a binary search method,

that requires O(log2(1/e)) computational steps. Computations of the approximate values

that correspond to each pair (a, b) will be done concurrently.

To estimate the time and the number of processors that are required for the resulting

algorithm, we can use the known parallel algorithms for computing the transitive closure o£

a crisp relation. Such methods are described in Section 5.5.2 of [J92]. For CREW, the best

known method requires O((log 2 n) 2) time and uses M(n) processors, where M(n) = n 2"37s

is the best known sequential bound for multiplying two n x n matrices [cwg0], [ACS90].

For common CRCW, the best known method requires O(log 2 n) time and n 3 processors.



To get the estimates for our case, we must multiply the number of processorsby
O(1/e) (since we are computing O(1/_) crisp transitive closures concurrently), and add

log2(1/e ) to the computation time.

5. CONCLUSIONS

In many areas (pattern recognition, databases, etc), it is important to compute the

transitive closure for a fuzzy relation, and to compute it fast. The best existing algorithms

for the sequential machine require O(n 2) computation time, which can be too slow for some

applications. So, J. Bezdek formulated a problem of finding faster parallel algorithms. In

this paper, we propose three parallel algorithms. Algorithm 1 is for the case when for

every memory location, and for every moment of time, only one processor is allowed to

write into it (so called CREW PRAM). This algorithm requires n 3 processors and takes

O((log= n) 2) computation time. We also propose two faster algorithms for the case when

several processors can simultaneously try to write into the same memory location (the write

will be done only if all of them want to write the same value; this case is called common

CRCW PRAM). Algorithm 2 requires O(n 4) processors and takes O(log 2 n) computation

time; Algorithm 3 takes O(n 3) processors, and takes O(log 2 n. log2(log 2 n)) computation

time.

The number of processors can be made smaller if we look for algorithms that compute

the transitive closure with a given precision e.
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